Skip to content

OCR Processing Use Cases (OCR)

Module Purpose: Extract text from scanned documents and images. This module contains 6 use cases.


Use Case Quick Reference

ID Title Priority
OCR-001 Queue OCR Job P1
OCR-002 Detect Document Language P1
OCR-003 Execute OCR Engine P1
OCR-004 Extract Tables P2
OCR-005 Extract Forms/Fields P2
OCR-006 Handle Multi-Page PDFs P1

UC-OCR-001: Queue OCR Job

Overview

Field Value
ID OCR-001
Title Queue OCR Job
Actor System
Priority P1 (MVP Phase 2)

Description

Add document to OCR processing queue based on file type and characteristics.

Queue Routing

Condition Queue Priority
Image file ocr_high High
Scanned PDF ocr_high High
Hybrid PDF ocr_medium Medium
Native PDF text_extract Low

Steps

  1. Analyze file to determine OCR need
  2. Select appropriate queue based on file type
  3. Create OCR job record
  4. Enqueue with priority

Output

{
  "job_id": "ocr_job_123",
  "document_id": "doc_abc",
  "queue": "ocr_high",
  "estimated_time": 30
}

Acceptance Criteria

  • Correct queue selection based on file type
  • Job tracking and status updates
  • Retry mechanism for failures

UC-OCR-002: Detect Document Language

Overview

Field Value
ID OCR-002
Title Detect Document Language
Actor OCR Worker
Priority P1 (MVP Phase 2)

Description

Detect the primary language of the document to optimize OCR settings.

Supported Languages

Language Code OCR Model
English eng tesseract/eng
Hindi hin tesseract/hin
Marathi mar tesseract/mar
Tamil tam tesseract/tam

Steps

  1. Sample text from document (first page)
  2. Run language detection algorithm
  3. Select OCR language pack
  4. Configure OCR engine with language

Output

{
  "detected_language": "eng",
  "confidence": 0.95,
  "alternatives": [
    {"language": "hin", "confidence": 0.03}
  ]
}

Acceptance Criteria

  • Primary language detected correctly
  • Multi-language documents handled
  • Fallback to English if detection fails

UC-OCR-003: Execute OCR Engine

Overview

Field Value
ID OCR-003
Title Execute OCR Engine
Actor OCR Worker
Priority P1 (MVP Phase 2)

Description

Run OCR engine on document to extract text.

Engine Configuration

Setting Value
Engine Tesseract 5
OEM 3 (LSTM)
PSM 6 (Block of text)
DPI 300

Steps

  1. Preprocess image (deskew, denoise, binarize)
  2. Set OCR engine parameters
  3. Run OCR on each page
  4. Collect text output with confidence scores
  5. Store extracted text

Output

{
  "document_id": "doc_abc",
  "pages": [
    {
      "page_number": 1,
      "text": "INVOICE\n\nInvoice #12345...",
      "confidence": 0.92
    }
  ],
  "total_confidence": 0.91,
  "processing_time_ms": 2500
}

Acceptance Criteria

  • Text extracted from all pages
  • Confidence score per page
  • Processing time <5s for typical documents

UC-OCR-004: Extract Tables

Overview

Field Value
ID OCR-004
Title Extract Tables
Actor OCR Worker
Priority P2 (MVP Phase 3)

Description

Detect and extract tabular data from documents.

Steps

  1. Detect table regions in document
  2. Extract cell boundaries
  3. OCR each cell
  4. Structure as rows/columns
  5. Return as JSON or CSV

Output

{
  "document_id": "doc_abc",
  "tables": [
    {
      "page": 1,
      "rows": [
        ["Item", "Quantity", "Price"],
        ["Widget", "10", "$50.00"],
        ["Gadget", "5", "$75.00"]
      ]
    }
  ]
}

Acceptance Criteria

  • Tables detected automatically
  • Cell content extracted correctly
  • Export as CSV available

UC-OCR-005: Extract Forms/Fields

Overview

Field Value
ID OCR-005
Title Extract Forms/Fields
Actor OCR Worker
Priority P2 (MVP Phase 3)

Description

Extract key-value pairs from form documents.

Steps

  1. Detect form layout
  2. Identify label-value pairs
  3. Extract field values
  4. Return structured data

Output

{
  "document_id": "doc_abc",
  "fields": {
    "Name": "John Smith",
    "Date": "2024-01-15",
    "Amount": "$5,000.00"
  }
}

Acceptance Criteria

  • Key-value pairs extracted
  • Common form fields recognized

UC-OCR-006: Handle Multi-Page PDFs

Overview

Field Value
ID OCR-006
Title Handle Multi-Page PDFs
Actor OCR Worker
Priority P1 (MVP Phase 2)

Description

Process multi-page PDF documents efficiently.

Steps

  1. Extract page count from PDF
  2. Convert each page to image
  3. OCR pages in parallel (configurable concurrency)
  4. Combine text from all pages
  5. Track per-page confidence

Configuration

Setting Value
Max pages 100
Parallel workers 4
Page timeout 60s

Acceptance Criteria

  • All pages processed
  • Page order preserved
  • Large documents handled without timeout

← Back to Use Cases | Previous: Tagging | Next: Search →