OCR Processing Use Cases (OCR)
Module Purpose: Extract text from scanned documents and images. This module contains 6 use cases.
Use Case Quick Reference
UC-OCR-001: Queue OCR Job
Overview
| Field |
Value |
| ID |
OCR-001 |
| Title |
Queue OCR Job |
| Actor |
System |
| Priority |
P1 (MVP Phase 2) |
Description
Add document to OCR processing queue based on file type and characteristics.
Queue Routing
| Condition |
Queue |
Priority |
| Image file |
ocr_high |
High |
| Scanned PDF |
ocr_high |
High |
| Hybrid PDF |
ocr_medium |
Medium |
| Native PDF |
text_extract |
Low |
Steps
- Analyze file to determine OCR need
- Select appropriate queue based on file type
- Create OCR job record
- Enqueue with priority
Output
{
"job_id": "ocr_job_123",
"document_id": "doc_abc",
"queue": "ocr_high",
"estimated_time": 30
}
Acceptance Criteria
UC-OCR-002: Detect Document Language
Overview
| Field |
Value |
| ID |
OCR-002 |
| Title |
Detect Document Language |
| Actor |
OCR Worker |
| Priority |
P1 (MVP Phase 2) |
Description
Detect the primary language of the document to optimize OCR settings.
Supported Languages
| Language |
Code |
OCR Model |
| English |
eng |
tesseract/eng |
| Hindi |
hin |
tesseract/hin |
| Marathi |
mar |
tesseract/mar |
| Tamil |
tam |
tesseract/tam |
Steps
- Sample text from document (first page)
- Run language detection algorithm
- Select OCR language pack
- Configure OCR engine with language
Output
{
"detected_language": "eng",
"confidence": 0.95,
"alternatives": [
{"language": "hin", "confidence": 0.03}
]
}
Acceptance Criteria
UC-OCR-003: Execute OCR Engine
Overview
| Field |
Value |
| ID |
OCR-003 |
| Title |
Execute OCR Engine |
| Actor |
OCR Worker |
| Priority |
P1 (MVP Phase 2) |
Description
Run OCR engine on document to extract text.
Engine Configuration
| Setting |
Value |
| Engine |
Tesseract 5 |
| OEM |
3 (LSTM) |
| PSM |
6 (Block of text) |
| DPI |
300 |
Steps
- Preprocess image (deskew, denoise, binarize)
- Set OCR engine parameters
- Run OCR on each page
- Collect text output with confidence scores
- Store extracted text
Output
{
"document_id": "doc_abc",
"pages": [
{
"page_number": 1,
"text": "INVOICE\n\nInvoice #12345...",
"confidence": 0.92
}
],
"total_confidence": 0.91,
"processing_time_ms": 2500
}
Acceptance Criteria
Overview
| Field |
Value |
| ID |
OCR-004 |
| Title |
Extract Tables |
| Actor |
OCR Worker |
| Priority |
P2 (MVP Phase 3) |
Description
Detect and extract tabular data from documents.
Steps
- Detect table regions in document
- Extract cell boundaries
- OCR each cell
- Structure as rows/columns
- Return as JSON or CSV
Output
{
"document_id": "doc_abc",
"tables": [
{
"page": 1,
"rows": [
["Item", "Quantity", "Price"],
["Widget", "10", "$50.00"],
["Gadget", "5", "$75.00"]
]
}
]
}
Acceptance Criteria
Overview
| Field |
Value |
| ID |
OCR-005 |
| Title |
Extract Forms/Fields |
| Actor |
OCR Worker |
| Priority |
P2 (MVP Phase 3) |
Description
Extract key-value pairs from form documents.
Steps
- Detect form layout
- Identify label-value pairs
- Extract field values
- Return structured data
Output
{
"document_id": "doc_abc",
"fields": {
"Name": "John Smith",
"Date": "2024-01-15",
"Amount": "$5,000.00"
}
}
Acceptance Criteria
UC-OCR-006: Handle Multi-Page PDFs
Overview
| Field |
Value |
| ID |
OCR-006 |
| Title |
Handle Multi-Page PDFs |
| Actor |
OCR Worker |
| Priority |
P1 (MVP Phase 2) |
Description
Process multi-page PDF documents efficiently.
Steps
- Extract page count from PDF
- Convert each page to image
- OCR pages in parallel (configurable concurrency)
- Combine text from all pages
- Track per-page confidence
Configuration
| Setting |
Value |
| Max pages |
100 |
| Parallel workers |
4 |
| Page timeout |
60s |
Acceptance Criteria
← Back to Use Cases | Previous: Tagging | Next: Search →